国产肥白大熟妇bbbb,国产av亚洲精品久久久久,国产 精品 丝袜,国产黄色大片,美女在线观看,国产超碰人人做人人爰

您的位置: 首頁(yè) > 技術(shù)文章 > 高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

更新時(shí)間:2025-09-22瀏覽:200次

Application and Analysis of Hyperspectral Technology in Cabbage Freshness Discrimination


食品新鮮度檢測(cè)是食品安全與品質(zhì)控制中的重要環(huán)節(jié),直接關(guān)系到消費(fèi)者的健康體驗(yàn)與營(yíng)養(yǎng)攝入。對(duì)大眾而言,食品新鮮度不僅影響食材的口感和營(yíng)養(yǎng)價(jià)值,更是保障飲食安全、減少食源性疾病風(fēng)險(xiǎn)的關(guān)鍵因素。

Food freshness detection is a critical aspect of food safety and quality control, directly impacting consumers' health experiences and nutritional intake. For the public, food freshness not only influences the taste and nutritional value of ingredients but also plays a key role in ensuring dietary safety and reducing the risk of foodborne illnesses.


高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析


本次測(cè)試以不同新鮮程度的白菜為研究對(duì)象,利用高光譜技術(shù)實(shí)現(xiàn)對(duì)白菜新鮮度的有效區(qū)分。

This study used cabbages of different freshness levels as research subjects and employed hyperspectral technology to achieve effective discrimination of cabbage freshness.

本次測(cè)試所采用的高光譜相機(jī)覆蓋400-1000nm的光譜范圍,具備優(yōu)于2.8nm的光譜分辨率,高達(dá)300個(gè)光譜波段,F(xiàn)/2的大光圈設(shè)計(jì)提升光通量,480個(gè)空間像素確保空間細(xì)節(jié)表現(xiàn),采用CMOS探測(cè)器并結(jié)合USB接口實(shí)現(xiàn)便捷高效的數(shù)據(jù)傳輸,12bits的有效位深保障了圖像數(shù)據(jù)的豐富層次與精度。該設(shè)備為農(nóng)、林、食品檢測(cè)等應(yīng)用提供了有力工具,歡迎大家進(jìn)一步了解。

測(cè)試采用線性推掃成像方案,照明光源為鹵素光源。實(shí)驗(yàn)在暗室環(huán)境中進(jìn)行,樣品被放置于水平位移臺(tái)上以完成圖像采集。

The hyperspectral camera used in this test covers a spectral range of 400–1000 nm, with a spectral resolution better than 2.8 nm, up to 300 spectral bands, and an F/2 large aperture design that enhances light throughput. With 480 spatial pixels ensuring detailed spatial representation, it utilizes a CMOS detector combined with a USB interface for efficient data transmission. The 12-bit effective bit depth ensures rich image data hierarchy and precision. This device serves as a powerful tool for applications in agriculture, forestry, and food detection. Further inquiries are welcome.

The test adopted a linear push-broom imaging method, with a halogen light source for illumination. The experiment was conducted in a darkroom environment, and samples were placed on a horizontal translation stage for image acquisition.

高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

測(cè)試樣品及測(cè)試環(huán)境 / Test Samples and Testing Environment


通過(guò)獲取不同新鮮度白菜在400-1000nm范圍內(nèi)的光譜曲線,并分別選取完好的莖與葉區(qū)域以及干枯的莖與葉區(qū)域計(jì)算平均光譜,分析表明:

完好的葉片(紅色曲線)與干枯葉片(紫色曲線)在500-700nm和800-900nm波段的光譜響應(yīng)存在明顯差異;

完好的莖(綠色曲線)與干枯的莖(黃色曲線)則在650-850nm范圍內(nèi)表現(xiàn)出顯著光譜變化。

By obtaining spectral curves of cabbages with different freshness levels within the 400–1000 nm range and calculating average spectra from intact stem and leaf regions as well as dried stem and leaf regions, the analysis revealed:

Significant differences in spectral responses between intact leaves (red curve) and dried leaves (purple curve) in the 500–700 nm and 800–900 nm bands;

intact stems (green curve) and dried stems (yellow curve) exhibited notable spectral variations within the 650–850 nm range.

高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

反射率測(cè)試 / Reflectance Testing


在數(shù)據(jù)處理階段,我們利用了兩種不同的算法:

During data processing, two different algorithms were applied:

算法一選取枯葉ROI區(qū)域作為分類標(biāo)準(zhǔn),能夠有效識(shí)別部分白菜表面的干枯區(qū)域,但對(duì)莖部干枯區(qū)域的區(qū)分效果有限。

Algorithm 1 used dried leaf ROI regions as classification criteria, effectively identifying some dried areas on the cabbage surface but demonstrating limited ability to distinguish dried regions on stems.

高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

算法一 / Algorithm 1


算法二通過(guò)對(duì)圖像進(jìn)行特征提取,實(shí)現(xiàn)了對(duì)表面干枯區(qū)域的更有效識(shí)別,從而對(duì)不同新鮮度的白菜實(shí)現(xiàn)了良好區(qū)分。

Algorithm 2 employed feature extraction from images, achieving more effective identification of surface-dried areas and enabling better discrimination of cabbages with different freshness levels.

高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析

算法二 / Algorithm 2


實(shí)驗(yàn)結(jié)果表明,基于400-1000nm波段的高光譜相機(jī)能夠檢測(cè)出不同新鮮程度白菜的光譜差異,且數(shù)據(jù)處理結(jié)果與實(shí)際狀態(tài)相符。

Experimental results indicate that the hyperspectral camera based on the 400–1000 nm band can detect spectral differences in cabbages of varying freshness levels, and the data processing outcomes align with actual conditions.

本實(shí)驗(yàn)亦識(shí)別出若干實(shí)際測(cè)量中的難點(diǎn):白菜表面覆蓋的保鮮膜易引起光線反射,對(duì)信號(hào)造成干擾;同時(shí),白菜的弧形表面不僅影響光線反射特性,也對(duì)相機(jī)的對(duì)焦精度提出了挑戰(zhàn)。

針對(duì)這些問(wèn)題,下一步計(jì)劃包括優(yōu)化光源結(jié)構(gòu)、引入多角度照明方案,建立反射率校正模型以消除弧面造成的光譜強(qiáng)度偏差,提升數(shù)據(jù)可比性。此外,還將擴(kuò)大樣本數(shù)量,構(gòu)建基于深度學(xué)習(xí)的新鮮度判別模型,以期實(shí)現(xiàn)更精確、可靠的白菜新鮮度分類能力,為實(shí)現(xiàn)更安全、更可靠的生鮮食品供應(yīng)鏈提供了有效的技術(shù)保障。

This experiment also identified several challenges in practical measurements: The freshness-preserving film covering the cabbage surface easily causes light reflection, interfering with signals; meanwhile, the curved surface of the cabbage not only affects light reflection characteristics but also poses challenges to the camera’s focusing accuracy.

To address these issues, future plans include optimizing the light source structure, introducing multi-angle lighting schemes, and establishing a reflectance correction model to eliminate spectral intensity deviations caused by curved surfaces, thereby improving data comparability. Additionally, the sample size will be expanded to develop a deep learning-based freshness discrimination model, aiming to achieve more accurate and reliable cabbage freshness classification capabilities. This provides effective technical support for building a safer and more reliable fresh food supply chain.


高光譜技術(shù)在白菜新鮮度判別中的應(yīng)用與分析



 

Contact Us
  • 客服熱線:400-688-7769
  • 郵箱:market@exponentsci.com
  • 固話:020-89858550
  • 地址:廣州市天河區(qū)廣汕二路602號(hào)惠誠(chéng)大廈B座403房

掃一掃  微信咨詢

©2025 愛(ài)博能(廣州)科學(xué)技術(shù)有限公司 版權(quán)所有    備案號(hào):粵ICP備20046466號(hào)    技術(shù)支持:化工儀器網(wǎng)    Sitemap.xml    總訪問(wèn)量:84605    管理登陸